

"L'infettivologia del 3" millennio: AIDS ed altro" VI Convegno Nazionale 15-17 maggio 2014 Paestum

"Single Tablet Regimen: la terapia ideale?"
 Dr. Giuseppe Nunnari
 Università di Catania

Sopravvivenza pazienti HIV+ in ART

Figure 1. Cumulative survival for HIV-infected patients starting HAART and persons from the general population. Time was calculated from 1 year after start of HAART. The study population was categorized as: Group 0: Population comparison cohort (dotted line, N = 9,068). Group 1: HIV-infected patients without HIV risk factors, comorbidity or alcohol/drug abuse (N = 871). Group 2: HIV-infected patients with HIV risk factors, but no comorbidity or alcohol/drug abuse (N = 704). Group 3: HIV-infected patients with comorbidity, but no alcohol/drug abuse (N = 379). Group 4: HIV-infected patients with alcohol/drug abuse (N = 313). *HIV risk factors:* detectable viral load (>49 copies/ml) and/or CD4 below 200 cells/ul at the last measurement prior to the index date and/or AIDS- defining disease as of the index date. *Comorbidity:* diagnosed with comorbidity as defined in the Charlson Comorbidity Index before index date. *Abuse:* diagnosed with drug or alcohol abuse before index date or reporting drug abuse as route of HIV transmission.

doi:10.1371/journal.pone.0022698.g001

Registrational Treatment-Naive Clinical Trials: Cross-Study Comparison* HIV RNA <50 c/mL at Week 48

- Virological efficacy
- Resistance
- Tolerability
- Long term toxicity
- Convenience
- Cost

Eviplera®

200 mg/25 mg/245 mg film-coated tablets

emtricitabine/rilpivirine/ tenofovir disoproxil

30 film-coated tablets. Oral use. **Eviplera®**

200 mg/25 mg/245 mg film-coated tablets

emtricitabine/rilpivirine/

tenofovir disoproxil

30 film-coated tablets.

Oral use.

EU/1/11/737/001

GILEAD

Gilead Sciences Intl Ltd Cambridge CB21 6GT United Kingdom

GILEAD

Stribild® 150 mg/150 mg/

200 mg/245 mg film-coated tablets

Elvitegravir/cobicistat/ emtricitabine/ tenofovir disoproxil

30 film-coated tablets Oral use

GILEAD

Differences in Discontinuation Risk of Specific Regimens vs EFV/FTC/TDF Single Tablet Regimen

Retrospective cohort using US claims data from the PharMetrics Integrated Outcomes Database; N=37,244 HIV patients (1/03–12/08)

HR of Discontinuing Regimen (n=2460)

Atripla had 61% lower discontinuation rate vs. all other regimens

Reference regimen for HR is: a) regimens without LPV/r; b) regimens without ATV ± RTV; c) regimens without EFV; d) all regimens other than Atripla Juday T, et al. AIDS Care 2011;23(9):1154–62

REACH Cohort Adherence Study Adherence and Efficacy Results

Patients recruited from a cohort of HIV+ homeless and marginally housed individuals and from public health clinics in San Francisco

Bangsberg D, et al.

Durability and Persistency of STRs Reduced Risk of Treatment Interruption

Retrospective evaluation of STR formulations impact on drug interruptions in 2 Italian centres for 533 patients starting EFV (May 1998 to March 2012)

 Primary endpoint: discontinuation of EFV for different reasons (virological failure [VF], side effects, central nervous system side effects [CNS-SE] or any other cause)

% Patients with Treatment Interruption Cause of Interruption (%) Non-STR p-value STR VF 0 9 0.05 **CNS** adverse effects NS 13 7 Patient decision 12 0.01 2

Adjusted HR for Treatment Interruption (any cause)

	aHR	95% CI	p-value
STR	0.48	0.25-0.90	0.023
Male Gender	0.67	0.49-0.92	0.028
IDU	1.71	1.14-2.57	0.01
Naïve (vs. Switched)	1.43	1.04-1.96	0.028

Despite keeping CNS toxicity, EFV-based STR was associated with reducing the risk of treatment interruption.

Medicaid Database Partial Adherence to ART & hospitalisations

Retrospective analysis of US Medicaid Claims Database (n=6,938) receiving 2 NRTIs plus NNRTI or PI or INSTI based ART (2009 – 2011)

- Complete non-adherence was similar across regimens, while partial adherence was only seen with non-STR regimens
- Patients on a STR had significantly better complete adherence to their HIV regimen

Cohen C, et al. HIV-11 2012; Glasgow, UK. P1

COMPACT: Italy Adherence, Clinical and Economic Outcomes of STR vs. Multi-Pill Regimens

Evaluation of outcomes in observational, retrospective cohort of 1,604 HIV+ pts (2008-2011)

Risk of hospitalisation

 Using multivariate Poisson regression analysis, selective non-adherence (SNA) of > 3.5% was found to have a 39% increased hospitalisation risk (95% CI 1.09 – 1.77; p = 0.008)

"The use of a STR regimen appears an effective therapeutic option to avoid SNA and, consequently, to prevent virological failure and to reduce hospitalisations."

Decreased Risk of Nonadherence With FixedDoseCombinations FDC

FDC regimens reduce risk of nonadherence by 26% compared with non-FDC.

Effect of FDCs versus non-FDC on risk of nonadherence

Bangalore S, et al. Am J Med. 2007;120:713-719.

- Virological efficacy
 - Probably not.
- Resistance
 - Potential area of improvement (limited impact)
- Tolerability
 - Overall, not. Some aspects of some drugs
- Long term toxicity
 - Some areas: hyperlipidemia, bone, kidney
- Convenience
 - Alternative STR
- Cost

Available Antiretroviral Agents

Nucleoside RTIs

- Zidovudine (ZDV)
- Didanosine (ddl)
- Zalcitabine (ddC)
- Stavudine (d4T)
- Lamivudine (3TC)
- Abacavir (ABC)
- Emtricitabine (FTC)
- Tenofovir DF (TDF)

Boosters

- Ritonavir (RTV)
- Cobicistat (cobi)

Nonnucleos(t)ide RTIs

- Nevirapine (NVP)
- Delavirdine (DLV)
- Efavirenz (EFV)
- Etravirine (ETR)
- Rilpivirine (RPV)

Integrase Inhibitors

- Raltegravir (RAL)
- Elvitegravir (EVG)
- Dolutegravir (DTG)

Protease Inhibitors

- Saquinavir (SQV)
- Ritonavir (RTV)
- Indinavir (IDV)
- Nelfinavir (NFV)
- Amprenavir (APV)
- Lopinavir/r (LPV/r)
- Atazanavir (ATV)
- Fosamprenavir (Fos-APV)
- Tipranavir (TPV)
- Darunavir (DRV)

Fusion Inhibitor

Enfuvirtide (T-20)

CCR5 Antagonist

• Maraviroc (MVC)

Available Antiretroviral Agents

Nucleoside RTIs

- Zidovudine (ZDV)
- Didanosine (ddl)
- Zalcitabine (ddC)
- Stavudine (d4T)
- Lamivudine (3TC)
- Abacavir (ABC)
- Emtricitabine (FTC)
- Tenofovir DF (TDF)
- TAF

Boosters

- Ritonavir (RTV)
- Cobicistat (cobi)

Nonnucleos(t)ide RTIs

- Nevirapine (NVP)
- Delavirdine (DLV)
- Efavirenz (EFV)
- Etravirine (ETR)
- Rilpivirine (RPV)
- Doravirine

Integrase Inhibitors

- Raltegravir (RAL)
- Elvitegravir (EVG)
- Dolutegravir (DTG)

CXCR4 Inhibitors

Protease Inhibitors

- Saquinavir (SQV)
- Ritonavir (RTV)
- Indinavir (IDV)
- Nelfinavir (NFV)
- Amprenavir (APV)
- Lopinavir/r (LPV/r)
- Atazanavir (ATV)
- Fosamprenavir (Fos-APV)
- Tipranavir (TPV)
- Darunavir (DRV)

Fusion Inhibitor

Enfuvirtide (T-20)

CCR5 Antagonist

• Maraviroc (MVC)

STaR¹ & ECHO/THRIVE² Study design

STaR¹: MultiCentre, international, randomised, open-label, Phase 3b, 96-week study

+

Pooled* ECHO⁺ and THRIVE^{‡2}: Randomised, double-blind, double-dummy, 96-week study

* Pooled ECHO/THRIVE FTC/TDF dataset contains data from 1,096 subjects who received RPV or EFV in combination with FTC/TDF [†] In the ECHO study, FTC/TDF background regimen (BR) was comprised of 690 subjects [‡] In the THRIVE study, BR consisted of 2 NRTIs: FTC/TDF (60%, n = 406) or 3TC/ZDV (30%, n = 204) or 3TC/ABC (10%, n = 68)

1. Cohen C, et al. HIV-11 2012; Glasgow, UK. Oral 425; 2. Adapted from Nelson M, et al. EACS 2011. Belgrade, Serbia. #LBPE7.3/7

Virologic suppression and CD4 change at Week 48 FDA snapshot analysis – ITT population ‡

RPV/FTC/TDF is non-inferior to EFV/FTC/TDF

CD4 count change (cells/mm³): RPV/FTC/TDF +200 vs. EFV/FTC/TDF +191 (p=0.34)

Cohen C, et al. HIV-11 2012; Glasgow, UK. Oral 425

STaR

Virologic suppression at Week 48 FDA snapshot analysis by baseline HIV-1 RNA stratified by 100,000 copies/mL ‡

Baseline HIV-1 RNA copies/mL

RPV/FTC/TDF compared to EFV/FTC/TDF by baseline HIV-1 RNA: <100,000 copies/mL - Non-inferior and statistically significant difference >100,000 copies/mL - Non-inferior efficacy

Modified from Cohen C, et al. HIV-11 2012; Glasgow, UK. Oral 425

STaR

STaR¹ & ECHO/THRIVE² Virologic Failure at Week 48 per FDA Snapshot Overall and by Baseline HIV-1 RNA

‡

Baseline HIV-1 RNA copies/mL

* Please note data from Complera US Prescribing Information. Gilead Sciences Inc. 2012.

1. Cohen C, et al. HIV-11 2012; Glasgow, UK. Oral 425; 2. Nelson M, et al. EACS 2011. Belgrade, Serbia. #LBPE7.3/7

STaR¹ & ECHO/THRIVE² Resistance analysis through Week 48

STaR

	EFV/FTC/TDF (n=392)	RPV/FTC/TDF (n=394)
Subjects with Resistance Data	2%	5%
Subjects with Resistance to ARVs	1%	4%
Any Primary NNRTI-R	1%	4%
Key NNRTI-R	K103N (0.3%)	E138K/Q (2%) Y181C/I (2%) K101E (1%)
Any Primary NRTI-R	0.3%	4%
Key NRTI-R	M184I (0.3%)	M184V/I (4%) K65R/N (1%)
Within Baseline (BL) HIV-1 RNA		
≤100,000 copies/mL	1%	2%
100,001–500,000 copies/mL	0	5%
>500,000 copies/mL	4%	19%

The STRs used in STaR, compared to the STR components used in ECHO and THRIVE, demonstrated less emergent resistance

1. Cohen C, et al. HIV-11 2012; Glasgow, UK. Oral 425; 2. Nelson M, et al. EACS 2011. Belgrade, Serbia. #LBPE7.3/7

+

STaR

Adverse events leading to discontinuation of study drug through Week 48

	RPV/FTC/TDF (n=394)	EFV/FTC/TDF (n=392)	
Discontinuations* Due to Adverse Event (AE), n (%)	10 (2.5%)	34 (8.7%)	<i>p</i> <0.001
AE leading to discontinuation in >1 subject in either arm			
Nervous System Events			
Dizziness	0	5 (1.3%)	
Abnormal Dreams or Nightmare	0	6 (1.5%)	
Insomnia	1 (0.3%)	3 (0.8%)	
Psychiatric Disorders			
Depression, Anxiety or Depressed Mood	0	9 (2.3%)	
Suicidal Ideation	0	2 (0.5%)	
GI, General, Skin Disorders			
Diarrhoea	0	2 (0.5%)	
Fatigue	0	2 (0.5%)	
Pyrexia	0	2 (0.5%)	
Toxic Skin Eruption	0	2 (0.5%)	

Cohen C, et al. HIV-11 2012; Glasgow, UK. Oral 425

* Per safety population

+

GS-246-106: SPIRIT – Study design

Switching boosted PI to Rilpivirine In-combination with Truvada as a STR MultiCentre, international, randomised, open-label, Phase 3b, 48-week study ‡

- Primary Endpoint: Non-inferiority (12% margin) of RPV/FTC/TDF to PI+RTV+2 NRTIs by FDA snapshot analysis HIV-1 RNA <50 copies/mL at 24 weeks²
- Secondary Endpoints: Proportion of subjects who have HIV1 RNA <50 copies/mL (missing=excluded) through Week 48, change in fasting lipid parameters and CD4 cell count at 24^{2,3} and 48¹ weeks, safety and tolerability to PI+RTV+2NRTIs at 24^{2,3} and 48¹ weeks
- Adherence & Patient reported outcomes: Visual Analog Scale Adherence, HIV Symptom Index and HIV Treatment Satisfaction Questionnaire³
- Ad Hoc Analysis: Outcome at 24 weeks for patients with pre-existing resistance mutations⁴

SPIRIT Virologic suppression at Weeks 24 and 48 FDA snapshot analysis – ITT population

Switching to RPV/FTC/TDF was noninferior to remaining on PI+RTV+2NRTIs for 24 weeks

Difference 3.8, CI [-1.6, 9.1]

Fisher M, et al. HIV-11 2012; Glasgow, UK. P285

 Similar rates of virologic suppression were seen with 48 weeks of RPV/FTC/TDF

‡

SPIRIT

Week 24 and 48 virologic suppression (snapshot analysis) stratified by HIV-1 RNA at ART initiation

FDA snapshot at 24 Weeks¹

Switching to RPV/FTC/TDF was non-inferior to remaining on PI+RTV+2NRTIs regardless of HIV-1 RNA while ARV naïve (a post-hoc analysis)

*23 (8%) RPV/FTC/TDF and 14 (9%) PI+RTV+2NRTI subjects were excluded from this analysis due to unavailable HIV-1 RNA while ARV naive 1. Palella F, *et al.* IAC 2012; Washington, DC. Oral TUAB0104; 2. Data on file, Gilead Sciences, Inc. ‡

FDA snapshot at 48 Weeks²

SPIRIT RPV/FTC/TDF NNRTI and NRTI resistance through Week 48

‡

	Week 2	Week 48		
n (% study arm)	RPV/FTC/TDF (Immediate switch, W24) N = 317	PI+RTV+2NRTIs (Delayed switch, W24) N = 159	Total RPV/FTC/TDF (Immediate switch, W48) N = 469*	
Subjects with Resistance to ARV Regimen	2 (0.6%)	1 (0.6%)	4 (0.9%)	
Emergent NNRTI and NRTI Resistance Mutations	Subject 1 [†] : K103N+L100I+M184I Subject 2: M184I	Subject 1: M184V+K70E/K	Subject 1 ⁺ : K103N+L100I+M184I Subject 2: M184I Subject 3: E138E/K+M184M/I/V Subject 4: E138K+V108V/I+M184V	

At Week 24, rates of resistance development were identical at 0.6% for immediate switch vs. PI+RTV+2NRTIs

- No subjects develop resistance in delayed switch arm (Wk 24 to 48)
- Through Week 48, resistance development in <1% of RPV/FTC/TDF subjects</p>

* Includes Day 1 to Week 48 data on immediate switch arm and Week 24 to Week 48 data on delayed switch arm ⁺ History of efavirenz use

Modified from Fisher M, et al. HIV-11 2012; Glasgow, UK. P285

Treatment response among RPV/FTC/TDF-treated subjects with pre-existing K103N through Week 48

Twenty-two of 24 (92%) RPV/FTC/TDF-treated subjects with pre-existing K103N achieved virologic suppression (<50 copies/mL)</p> 1

	Immediate, D1 to W48 N = 317	Delayed, W24 to W48 N = 152	Total, D1 to W48 N = 469
Subjects with Pre-existing K103N, n	18	6	24
Snapshot Outcome, n			
Virologic Suppression	17	5	22
Virologic Failure	1 ª	0	1 ª
No Data in Window	0	1 ^b	1 ^b

^a Subject with pre-existing K103N and V179I who subsequently acquired M184V, E138K, and V108V/I while on study drug ^b Missing data during window but on study drug, suppressed at prior visit

Fisher M, et al. HIV-11 2012; Glasgow, UK. P285

SPIRIT

Phase 2b, open-label, multiCentre, 48-week study of immediate switch from EFV/FTC/TDF to RPV/FTC/TDF in stable, virologically controlled subjects

Stable EFV/FTC/TDF for ≥3 mos VL <50 c/mL for ≥8 wks Switch due to EFV intolerance No resistance to study drugs (N=50)

Pre-dose PK samples obtained: Wks 1, 2, 4, 6, 8, and 12

#

Primary endpoint:

HIV-1 RNA <50c/mL at week 12 after switching

Secondary endpoints: Safety and

Safety and tolerability of RPV/FTC/TDF STR over 24 & 48 wks HIV-1 RNA <50 c/mL at week 24 and week 48 post-switch Pharmacokinetics of RPV after switching from EFV Virologic suppression was maintained in majority of virologically-suppressed subjects who switched from EFV/FTC/TDF to RPV/FTC/TDF through Wk 48

Virologic outcomes by ITT-FDA snapshot through week 48

100 100% 100% 94% % HIV-1 RNA <50 c/ml 80 60 40 20 49/49 49/49 46/49 0 **48**² 12 24

GS 264-111

#

- High rate of success in naïve patients
 - More virological failures than EFV in patients with high VL
- Adequate for switching from a PI- or EFV-based regimens
- Good tolerability
- Low genetic barrier
- Convenient (STR)
 - Interaction with food and PPi

GS-102 & GS-103: EVG/COBI/FTC/TDF Study Design

Multicenter, randomized, blinded, 192-week studies

GS-102¹

Primary endpoint:

Non-inferiority (12% margin) of EVG/COBI/FTC/TDF to comparator arm by FDA snapshot analysis HIV-1 RNA <50 copies/mL at 48 weeks

1. Zolopa A, *et al. JAIDS* 2013. e-published

2. Rockstroh JK, et al. JAIDS 2013. e-published

GS-103: EVG/COBI/FTC/TDF vs. ATV + RTV + FTC/TDF Efficacy Endpoint: HIV-1 RNA <50 c/mL (Snapshot) Weeks 48 and 96

EVG/COBI/FTC/TDF (n=353) ATV + RTV + FTC/TDF (n=355)

* No virologic data in window defined as: missing HIV RNA data but on study, discontinued drug due to AE or death, or discontinued drug for reasons other than AE, death, and lack/loss of efficacy with last HIV RNA <50 copies/mL. For the Week 48 virologic success, the analysis window is defined as from Study Day 309-378 inclusive and Study Day 631-714 inclusive for Week 96.

GS-103: EVG/COBI/FTC/TDF vs. ATV + RTV + FTC/TDF Week 96 Efficacy by Baseline VL & CD4

EVG/COBI/FTC/TDF ATV + RTV + FTC/TDF

*Virologic success (HIV-1 RNA <50 copies/mL) as defined by FDA Snapshot algorithm

⁺P-value for the homogeneity test was based on the Wald test of the interaction between treatment and subgroup

Rockstroh JK, et al. HIV-11 2012; Glasgow. O424

GS-102 & GS-103: EVG/COBI/FTC/TDF vs. EFV/FTC/TDF and ATV+RTV + FTC/TDF Mean Change from Baseline in CD4 Cell Counts

1. Zolopa A, *et al. JAIDS* 2013. e-published

2. Rockstroh JK, *et al.* HIV-11 2012; Glasgow. O424

3. Rockstroh JK, et al. JAIDS 2013. e-published

GS-103: EVG/COBI/FTC/TDF vs. ATV + RTV + FTC/TDF Integrase, PI, NRTI Resistance Through Week 48 and 96

n (%)	EVG/COBI/FTC/TDF (n=353)			ATV	+RTV+FT((n=355)	/TDF
		W48	W96*		W48	W96*
Emergent Resistance		5 (1.4%)	6 (1.6%)		0	0
Primary INSTI-R or PI-R		4 (1.1%)	5		0	0
	E92Q	1				
	N155H	2				
	Q148R	2				
	T66I	1				
Primary NRTI-R		4 (1.1%)	5 (1.4%)		0	0
	M184V/I	4	5			
	K65R	1	1			

* Additional specific mutations will be available in later publications

1. DeJesus E, et al. Lancet 2012; 379: 2429-38

2. Rockstroh JK, et al. JAIDS 2013. e-published

GS-103: EVG/COBI/FTC/TDF vs. ATV + RTV + FTC/TDF Adverse Events Leading to Study Drug DC

	EVG/COB (n=	I/FTC/TDF 353)	ATV+RTV+FTC/TC (n=355)	
AE Leading to Study Drug DC*	W48	W96	W48	W96
Blood creatinine increase	0.3%	0.6%	ο	ο
Pyrexia	0.6%	0.6%	ο	ο
Diarrhoea	0.6%	0.6%	0.3%	0.3%
Nausea	0.3%	0.3%	1.1%	1.1%
Vomiting	0.3%	0.3%	0.6%	0.6%
Fatigue	0.3%	0.3%	0.6%	0.6%
Ocular icterus	ο	ο	1.1%	1.1%
Jaundice	ο	0	0.6%	0.6%
Drug eruption	ο	ο	0.6%	0.6%
Dizziness	0	0	0.6%	0.6%

* >1 subject in either treatment group cumulatively at Week 96

Like in Study 102, no cases of renal tubulopathy between Week 48 and Week 96

^ One EVG/COBI/FTC/TDF and one ATV + RTV + FTC/TDF patient DC due to elevation in SCr after Week 48

SCr improved after study drug DC in both patients

GS-102 & GS-103: EVG/COBI/FTC/TDF vs. EFV/FTC/TDF and ATV + RTV + FTC/TDF Median eGFR Changes from Baseline or from Week 4

2. Zolopa A, et al. HIV-11 2012; Glasgow. O424

GS-102 & GS-103: EVG/COBI/FTC/TDF vs. EFV/FTC/TDF and ATV + RTV + FTC/TDF

Median Serum Creatinine Changes from Baseline or from Wk 4

2. Zolopa A, et al. HIV-11 2012; Glasgow. O424

GS-123: RAL + FTC/TDF Simplification to EVG/COBI/FTC/TDF Study Design

Phase 3b, open-label, multicenter, 48-week study of immediate simplification from RAL + FTC/TDF to EVG/COBI/FTC/TDF in stable, virologically controlled subjects

eGFR > 70 mL/min

Primary Endpoint:

HIV-1 RNA <50 c/mL for EVG/COBI/FTC/TDF at Week 12 after simplification

Secondary Endpoints:

Safety and tolerability of EVG/COBI/FTC/TDF over 24 and 48 weeks HIV-1 RNA <50 c/mL at Week 24 and Week 48

Mills A, et al. HIV DART 2012; San Diego

GS-0115: STRATEGY/PI PI + RTV + FTC/TDF Simplification to EVG/COBI/FTC/TDF Study Design

Multicenter, international, randomized, open-label, Phase 3b, 96-week study

Primary Endpoint:

Non-inferiority to PI + RTV + FTC/TDF (HIV-1 RNA <50 c/mL at 48 weeks)

Secondary Endpoints:

Change in fasting lipid parameters at 48 weeks HIV-1 RNA <50 c/mL at 96 weeks Visual Analog Scale, Adherence Questionnaire, HIV Symptom Index Questionnaire, HIV Treatment Satisfaction Questionnaire Change (HIVTSQc), and Short Form-36 (SF-36)

ClinicalTrials.gov identifier: NCT01475838

GS-0121: STRATEGY/NNRTI NNRTI + FTC/TDF Simplification to EVG/COBI/FTC/TDF Study Design

Multicenter, international, randomized, open-label, Phase 3b, 96-week study

Primary Endpoint:

Non-inferiority to NNRTI + FTC/TDF (HIV-1 RNA <50 c/mL at 48 weeks)

Secondary Endpoints:

Change in fasting lipid parameters at 48 weeks Undetectable viral load (<50 c/mL) at 96 weeks Visual Analog Scale, Adherence Questionnaire, HIV Symptom Index Questionnaire, HIV Treatment Satisfaction Questionnaire Change (HIVTSQc), and Short Form-36 (SF-36)

ClinicalTrials.gov identifier: NCT01495702

- High rate of success in naïve patients
 - Non inferior to EFV and ATV/r
- Adequate for switching from a PI-, NNRTI- or RAL-based regimens
- Good tolerability
 - Impact on creatinine clearance/serum creatinine
- Low genetic barrier
- Convenient (STR)
 - Interactions secondary to cobicistat

Primary endpoint:

Proportion with HIV-1 RNA <50 c/mL at Week 48, FDA snapshot analysis,

-10% non-inferiority margin with pre-specified tests for superiority

Secondary endpoints:

Tolerability, long-term safety, immunologic, health outcome and viral resistance

Proportion (95% CI) of Subjects <50 c/mL (FDA Snapshot) 100 **DTG+ABC/3TC: 88% 90** · 80 -Proportion (%) of Subjects <50 c/mL HIV-1 RNA <50 c/mL HIV-1 RNA <0.0 0 </pre> **ATR: 81%** WK 48 difference in response (95% CI): +7.4% (+2.5% to +12.3%); p=0.003 20-**10**. DTG 50 mg + ABC/3TC QD Atripla (ATR) QD **0**. 12 BL 2 8 16 24 32 40 48 Week

- DTG 50mg +ABC/3TC QD was statistically superior to Atripla at Week 48 (primary endpoint)
- Subjects receiving DTG +ABC/3TC achieved virologic suppression faster than Atripla, median time to HIV-1 RNA <50c/mL of 28 days (DTG +ABC/3TC) vs 84 days (Atripla), P<0.0001

Walmsley S, et al. 52nd ICAAC. 9-12 Sept 2012. Abstract H-556<mark>b</mark>.

Virology: Resistance

	DTG 50mg +ABC/3TC QD (N=414)	Atripla QD (N=419)
Subjects with PDVF	18 (4%)	17 (4%)
PDVF genotypic population	11	9
PDVF Genotypic (RT Results at Baseline and PDVF)	9	9
NRTI tmt-emergent major mutations	0	1(K65R)
NNRTI tmt-emergent major mutations	0	4 (K101E,
		K103N, G190A)*
PDVF Genotypic (IN Results at Baseline and PDVF)	7	7
INI-r tmt-emergent major substitution	0**	0

* n=1 with K101E, n=1 with K103N, n=1 with G190A and n=1 with K103N+G190A **E157Q/P polymorphism detected with no significant change in IN phenotypic susceptibility

Renal Safety

- Small increase in creatinine due to blockade of Cr secretion¹
- DTG does not affect actual glomerular filtration rate (GFR)¹

1. Koteff, J. et al. Br J Clin Pharmacol. In press; 2012 Aug. Walmsley S, et a

Walmsley S, et al. 52nd ICAAC. 9-12 Sept 2012. Abstract H-556b.

SPRING-2 (ING113086) Study Design SPRING²

- Phase III, randomized, double-blind, double-placebo, multicenter, parallel-group, non-inferiority study, ART-naive patients
- All arms include 2 NRTI backbone given once daily (ABC/3TC or TDF/FTC)
- Primary endpoint: % <50 c/mL at 48 weeks ("snapshot"), non-inferiority margin 10%</p>

Protocol-Defined Virologic Failure (PDVF): Genotype

Amongst DTG-treated subjects, no integrase nor NRTI mutations were detected through Week 48

	DTG 50 mg QD n=411	RAL 400 mg BID n=411
Subjects with PDVF	20 (5%)	28 (7%)
IN genotypic results at BL and time of PDVF	8	18
INI-r mutations	0	1/18 (6%)ª
PR/RT genotypic results at BL and time of PDVF	12	19
NRTI-r mutations	0	4/19 (21%) ^{a,b,c,d}

Mutations by subject in the RAL 400 mg BID arm:

^a T97T/A, E138E/D, V151V/I, N155H + A62A/V, K65K/R, K70K/E, M184V

^{b, c, d} A62A/V (n=1), M184M/I (n=1), M184M/V (n=1)

Primary endpoint: proportion with HIV-1 RNA <50 c/mL at Week 48, FDA Snapshot analysis, -12% non-inferiority (NI) margin

<u>Secondary endpoints</u>: antiviral activity, safety, tolerability, health outcomes and viral resistance

FLAMINGO: DTG Superior to DRV/RTV + 2 NRTIs in Treatment-naive Patients at Week 48

- 2 pts (<1%) in each arm met criteria for virologic failure
 - No patients with resistance in either arm
- Similar increase in CD₄+ cell count at Week 48:
 - +210 cells/mm³ in each arm

Snapshot by Randomization Strata at Week 48

^a Adjusted difference (DTG - DRV/r) based on Cochran-Mantel-Haenszel stratified analysis adjusting for baseline HIV-1 RNA and background dual NRTI therapy

^b Unadjusted differences support non-inferiority of DTG vs DRV/r within baseline HIV-1 RNA and background dual NRTI strata.

Feinberg et al. ICAAC 2013; Denver, CO. Abstract H-1464a.

HIV-1 RNA ≥500 copies/mL *Resistance to RAL and/or EVG	Functional monotherapy phase	Optimised phase		
*Resistance to ≥2 ART classes other than INIs	DTG 50 mg BID and continue failing regimen	DTG 50 mg BID + optimised backgroun regimen with OSS ≥ ²	d	
Screening period up to a maximum of 42 days	1 1			
Screening visit ~Day -35	Day 1 Da	y 8 Week 24 analysis	Week 48 analysis	

*Screening or documented historical evidence.

OSS (overall susceptibility score) determined by Monogram Biosciences

Nichols, G. et al. HIV11, Glasgow, UK; 11-15 November 2012 ; Oral # O232.

Day 8 and Week 24 Efficacy Endpoints VIKING-3

Week 24 Response by Mutation Category and OBR Overall Susceptibility Score (OSS)

	HIV-1 RNA	<50 copies/m (N=	(Snapshot)	
Derived IN mutation group*	OSS=0	OSS=1	OSS≥2	Total
No Q148,** n (%)	2/2 (100)	24/29 (83)	31/41 (76)	57 (79)
Q148 + 1, [†] n (%)	2/2 (100)	3/7 (43)	4/11 (36)	9 (45)
Q148 +≥ 2,† n (%)	1/2 (50)	0/7 (0)	0	1 (11)

* Virus from the ≥2 primary mutations group was re-categorized to the Q148+ or No Q148 groups as appropriate **143, 155, 66, 92, historical resistance evidence only. [†]G140A/C/S, E138A/K/T, L74I

In multivariate analyses of baseline factors on Week 24 response rates, the presence of Q148 + ≥2 mutations and increasing DTG FC were highly correlated with fewer subjects achieving <50 copies/mL (P≤0.001)</p>

Increasing OBR activity score did not impact response

- In patients with OSS=1, the most common active ARVs were TDF, T20, MVC and ETR
- Overall, only 23% (28/114) received a PI/r as the fully active ARV in OBR
- In most cases, the 2nd and 3rd active ARV was an NRTI

- High rate of success in naïve patients
 - Superior to EFV and DRV/r. Non inferior to RAL
- Good tolerability
 - Impact on creatinine clearance/serum creatinine
- High genetic barrier
 - No development of resistance after failure in naïve patients
 - High rate of success in deep salvage therapy
- Convenient (STR)
 - No significant interactions

New drugs Will they have an impact on?

- Virological efficacy
 - Probably not
- Resistance
 - Dolutegravir
- Tolerability
 - Rilpivirine, Dolutegravir
- Long term toxicity
 - No
- Convenience
 - New STR (Rilpivirine, Elvitegravir/c, Dolutegravir)
- Cost
 - Certainly not

Initial Regimen: Recommended/Preferred Agents

Initial Regimen: Recommended/Preferred Agents

Which Patient for EFV?

Considerations in Favor

- Effective across HIV-1 RNA, CD4+ strata^[2]
- Most experience of all NNRTIs
- Most experience of all preferred drugs
- Coformulation; 1 pill QD^[1]

Considerations Against

- CNS effects^[1]
- High risk of resistance at virologic failure^[3]
- Drug–drug interactions with other drugs metabolized by CYP system^[1]
- Potential for teratogenesis in early pregnancy^[4]

1. TDF/FTC/EFV [package insert]. 2. Ribaudo HJ, et al. J Infect Dis. 2008;197:1006-1010. 3. Gallant J, et al. N Engl J Med. 2006;354:251-260. 4. DHHS Perinatal Guidelines. July 2012. 5. Daar E, et al. Ann Intern Med. 2011;154:445-456

Which Patient for Boosted PIs?

Considerations in Favor

- Effective across HIV-1 RNA, CD4+ strata^[1,2]
- Little/no emergence of resistance at VF^[1,2]
- Low risk for new resistance to develop in those with transmitted resistance
- Preferred agents in pregnancy (ATV/RTV, LPV/RTV)^[3]

Considerations Against

- Drug–drug interactions with other drugs metabolized by CYP system^[5,6]
- Concerns about renal function (greatest concern when combined with TDF)^[1,4]
- Variable lipid effects^[1,2]
- No coformulations with NRTIs

1. Molina JM, et al. Lancet. 2008;372:646-655. 2. Ortiz R, et al. AIDS. 2008;22:1389-1397. 3. DHHS Perinatal Guidelines. July 2012. 4. Mocroft A, et al. AIDS. 2010;24:1667-1678. 5. Atazanavir [package insert]. 6. Darunavir [package insert].

Which Patient for RAL?

Considerations in Favor

- Effective across HIV-1 RNA, CD4+ strata^[1]
- Few adverse events^[1]
- Few drug–drug interactions^[2]
- Limited effects on lipids^[3]

Considerations Against

- No coformulations with NRTIs
- Twice-daily dosing^[2,4]
- High risk of resistance at VF^[3]

Rockstroh J, et al. J Acquir Immune Defic Syndr. 2013;63:77-85.
 Raltegravir [package insert].
 Lennox J, et al. Lancet. 2009;374:796-806.
 Eron JJ Jr, et al. Lancet Infect Dis. 2011;11:907-915.

And what about new drugs?

Which Patient for RPV?

Considerations in Favor Superior vs EFV at lower VL^[1] Fewer CNS adverse events than EFV^[2] Coformulated/1 pill daily

Considerations Against

- Less effective at high BL VL^[2] (not recommended at high VL and low CD4+)^[3]
- Food requirement^[4]
- Restricted use with PPIs or H2 blockers^[4]
- High risk of resistance and cross-resistance with other NNRTIs at VF^[2]

Which Patient for TDF/FTC/EVG/COBI?

Considerations in Favor

- Coformulated/1 pill dally
- Once-daily INSTI regimen
- Noninferior to EFV and ATV/RTV across HIV-1 RNA, CD4+ strata^[1,2]

Considerations Against

- Includes pharmacologic booster
- Drug–drug interactions^[6]
- High risk of resistance at VF¹⁻ 4³
- Cross resistance with RAL^[5]
- Concerns about monitoring renal function with COBI^[6]

1. Zolopa A, et al. J Acquir Immune Defic Syndr. 2013;63:96-100. 2. Rockstroh J, et al. J Acquir Immune Defic Syndr. 2013;62:483-486. 3. Sax PE, et al. Lancet. 2012;379:2439-2448. 4. DeJesus E, et al. Lancet. 2012;379:2429-2438. 5. DeJesus E, et al. IAS 2007. Abstract TUPEB032. 6. TDF/FTC/EVG/COBI [package inser

Tabella 3 – Preferenze dei farmaci nei regimi raccomandati (preferiti e alternativi), all'interno delle classi principali (NRTI, NNRTI, IP/r, INI) e in rapporto a specifiche condizioni.

CONDIZIONI	NRTI ba	ckbone	N	NRTI		P/r		INI
	1° scelta	2° scelta	1° scelta	2° scelta	1° scelta	2° scelta	1° scelta	2° scelta
Dislipidemia/ Rischio cardiovascolare	TDF/FTC	ABC/3TC	NVP RPV	EFV	ATV+r DRV+r	LPV/r	DTG EVG/COBI RAL	
Insufficienza renale	ABC/3TC	TDF/FTC	EFV NVP RPV		DRV+r	ATV+r LPV/r	DTG RAL	
Problematiche gastrointestinali	ABC/3TC TDF/FTC		EFV NVP RPV		ATV+r DRV+r	LPV/r	DTG EVG/COBI RAL	

									-
Uso contraccettivi orali	ABC/3TC		RPV	EFV	ATV/r	DRV+r LPV/r	DTG	EVG/COBI	1
	TDF/FTC			NVP			RAL		_
Uso concomitante PPI	ABC/3TC		EFV		DRV+r	ATV+r	DTG		
(Inibitori di Pompa	TDF/FTC		NVP		LPV/r		EVG/COBI		
Protonica)							RAL		
Terapia sostitutiva con	ABC/3TC		RPV	EFV	ATV+r	LPV/r	DTG	EVG/COBI	1
metadone	TDF/FTC			NVP	DRV+r		RAL		
Alto grado di interazioni	ABC/3TC			EFV		ATV+r	DTG	EVG/COBI	1
farmacologiche	TDF/FTC			NVP		DRV+r LPV/r	RAL		
				RPV					
Necessità di	ABC/3TC		EFV		ATV+r;	LPV/r	DTG	RAL	1
miglioramento	TDF/FTC		NVP		DRV+r		EVG/COBI		
dell'aderenza/riduzione			RPV						
del pill burden									
Co-trattamento con	TDF/FTC	ABC/3TC	RPV	EFV	ATV+r	DRV+r	DTG		1
farmaci anti-HCV				NVP		LPV/r	RAL	EVG/COBI	
Co-trattamento con	ABC/3TC		EFV	NVP		ATV+r	RAL	DTG	1
farmaci Tubercolari	TDF/FTC			RPV		DRV+r		EVG/COBI	
						LPV/r			
Disturbi cognitivi	ABC/3TC	TDF/FTC	NVP	EFV	DRV+r	ATV+r	DTG	EVG/COBI	1
sintomatici (MND, HAD)				RPV	LPV/r		RAL		
Disturbi psichiatrici	ABC/3TC		NVP	EFV	ATV+r		DTG	RAL	1
maggiori	TDF/FTC		RPV		DRV+r		EVG/COBI		
					LPV/r				
Osteoporosi	ABC/3TC	TDF/FTC	EFV	RPV	ATV+r	LPV/r	RAL	DTG	1
			NVP		DRV+r			EVG/COBI	
Gravidanza	ABC/3TC		NVP	EFV	ATV+r	DRV+r	RAL	DTG	1
	TDF/FTC			RPV	LPV/r			EVG/COBI	

 Il criterio principale della prima/seconda scelta si basa su dati da studi randomizzati o osservazioni. Per i farmaci in cui le evidenze non sono considerate sufficienti o per i quali vi siano evidenze contrarie, si è scelto di indicarli come seconda scelta.

 ATV+r rispetto a DRV+r ha dati comparabili sulla dislipidemia. ATV+r /non è associato ad un aumentato rischio di malattie cardio e cerebrovascolari, mentre per DRV+r non si dispongono di osservazioni sufficienti al riguardo.

- EVG/COBI è considerato e valutato solo nella co-formulazione comprendente TDF/FTC/EVG/COBI.
- TDF/FTC/EVG/COBI non deve essere utilizzato con e-GFR<70 ml/min/1.73m²).
- La valutazione come 2° scelta di ATV+r e LPV/r nell'insufficienza renale è riferita soprattutto ai regimi comprendenti TDF/FTC come backbone nucleos(t)idico.
- Per il grado delle interazioni farmacologiche tra i farmaci si richiama alle schede tecniche e/o alle indicazioni presenti nella relativa parte delle LG.
- La valutazione della scelta nei pazienti con co-trattamento con farmaci anti-HCV è basata sulle interazioni con DAA di prima generazione e con ribavirina.
- La valutazione della scelta nei pazienti con Tubercolosi è basata sulla compatibilità dei farmaci antiretrovirali con rifampicina o rifabutina in base al profilo di interazione.
- La co-somministrazione di ATV+r con PPI non è raccomandata; quella con RPV è controindicata.
- La co-somministrazione di ATV+r e contraccettivi orali è compatibile utilizzando dosi di etinil-estradiolo pari o superiori a 35 mcg.
- Osteoporosi definita da criterio OMS con DXA e/o anamnesi per fratture osteoporotiche da trauma minimo.
- "/" = co-formulato; "+"= non co-formulato; "r"=RTV come booster.

Individualizing First-line Therapy: Specific Circumstances

Circumstance	Agents
No genotype	Use boosted PI
High HIV-1 RNA	Caution with RPV, ABC?,
Renal disease	 Caution with TDF; monitoring complicated with COBI
Dyslipidemia	RAL, RPV most lipid neutral
CV risk factors	 Possible association with ABC, LPV/RTV No data for DRV/RTV, INSTIS, MVC
Pregnancy	 Preferred: ZDV/3TC + NVP, LPV/RTV, or ATV/RTV EFV can be used after first 5-6 wks
Chronic HBV infection	 Preferred TDF + 3TC or FTC Alternative is entecavir
Decreased BMD	 Caution with TDF
Concerns about CNS effects	 Caution with EFV for at least first mo

Considerations When Selecting First-line Antiretroviral Therapy

Patient/Viral Factors

- Baseline CD4+ cell count/ HIV-1 RNA level
- Age
- Sex
- Occupation (eg, work schedule)
- Comorbid conditions (eg, CV risk, renal abnormalities)
- Plans for pregnancy
- Access to care
- Concurrent medications
- Adherence to other medications
- Genetics (eg, HLA-B*5701)
- Viral tropism

Antiretroviral Drug Factors

- Efficacy
- Baseline drug resistance
- Tolerability
- Long-term toxicity/metabolic effects
- Drug–drug interactions
- Dosing frequency
- Pill burden
- Pharmacokinetics
- Cost

Generic Drugs

