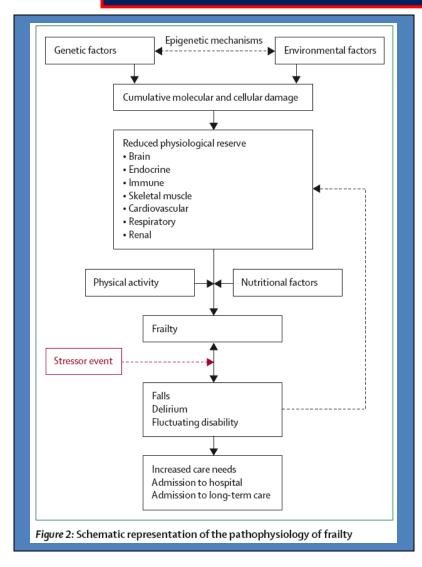


"Un'appropriata terapia antibiotica nei pazienti anziani: questione aperta dalle Unità di terapia intensiva alle Residenze Sanitarie Assistite"

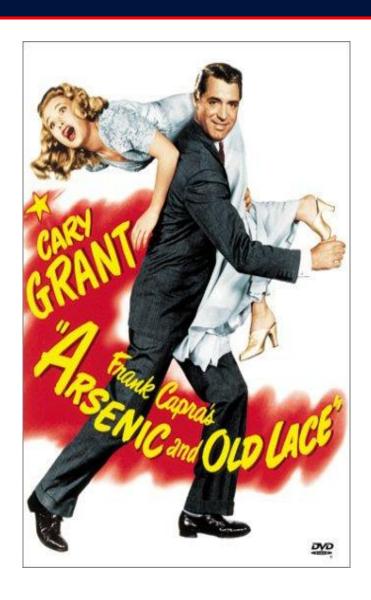
M. Tinelli
Direttore USC di Malattie Infettive e Tropicali
Azienda Ospedaliera di Lodi



IL PROBLEMA DEL PAZIENTE ANZIANO

Frailty in elderly people

Andrew Clegg, John Young, Steve Iliffe, Marcel Olde Rikkert, Kenneth Rockwood


Lancet 2013; 381: 752-62, Published Online, February 8, 2013

Frailty is the most problematic expression of population ageing.

It is a state of vulnerability to poor resolution of homoeostasis after a stressor event and is a consequence of cumulative decline in many physiological systems during a lifetime.

Antibiotics and elderly patients

- Decreased ability to perform daily life activities (i.e. regular personal hygiene) may contribute to colonization with resistant organisms
- Older adults who reside in longterm care facilities are at higher risk for multidrug resistant pathogens

The burden of infections in LTCFs is significant: prevalence studies

17-15-25 LTCFs in 3-year PPS

6.7-7.6-7.6% infected

From 4,3 %

to 16%

11.5% infected (from 10% in spring to

16% in winter)

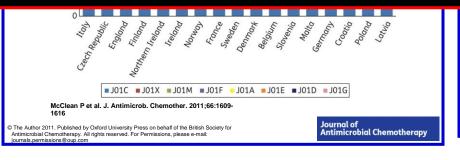
Marchi M et al, Infection 2012

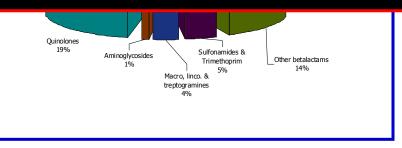
Ch

Antibiotic use in the elderly and in LTCFs

Antibiotic treatment in LTCFs

- 4.0-7.3 courses/1000 resident days
- 47%-79% of residents at least 1 course per year
- Frequently inappropriate (38% -51%)


Dulon M et al, BMC Infect Dis 2011; 11: 138; Rooney PJ, JAC 2009; 64:635; van der Mee-Marquet N, ICHE 2010; 31: 968; Van Buul LW, JAMDA 13 (2012) 568.e1-568.e13


J Antimicrob Chemother 2011; **66**: 1609–1616 doi:10.1093/jac/dkr183 Advance Access publication 19 May 2011

Journal of Antimicrobial Chemotherapy

- No specific guidelines for rational prescribing in 50% of LTCFs
- Restricted antibiotic formulary:16%
- Minimal education programs

Principles for prescribing in elderly

- Identification of bacterial infection by optimized diagnosis
- Severity assessment
- Recognition and incorporation of local resistance data
- Targeting bacterial eradication (or maximal reduction in bacterial load)
- Knowledge and use (if it's possible) of PK/PD indices to optimize choice and dosage
- Patient safety-centered Antimicrobial Stewardship
- Objective assessment of true (overall) costs of resistance and related treatment failure

Age-relate changes - I

Decreased absorption

Decreased distribution

Decreased metabolism

Decreased renal elimination

Age-relate changes - II

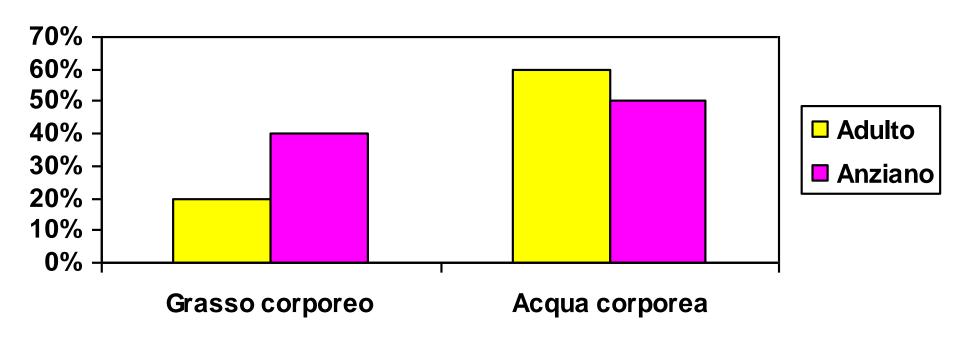
Ridotta acidità gastrica

Ridotta motilità intestinale

Ridotta superficie villi

Ridotta massa corporea

Modificazioni fisiologiche e farmacocinetiche nell'anziano


Modificazioni fisiologiche Potenziali modificazioni farmacologiche

DISTRIBUZIONE

- Aumento tessuto adiposo e riduzione massa muscolare
- Diminuzione acqua corporea totale
- Modesta riduzione albumina sierica
- Aumento dell'α1glicoproteina acida

- Emivita prolungata delle molecole liposolubili
- Maggiori concentrazioni ematiche delle molecole idrosolubili
- Maggiori concentrazioni libere di alcune molecole (es. ceftriaxone, sulfamidici, clindamicina)
- Minori concentrazioni libere dei macrolidi

Massa corporea e infezioni nell'anziano

Dopo i 65 anni si ha una significativa riduzione della massa magra, del contenuto idrico (50% del peso corporeo) e un incremento del tessuto adiposo: 30% nel sesso maschile e 40% in quello femminile.

Tissue penetration of antibiotics: possible changes in elderly patients

Increased proportion of adipose tissue

Lipophilc compounds (macrolides, quinolones)

Vd and half-life

Hydrophilic compounds

(beta-lactams, aminoglycosides, glycopeptides)

Decreased total body water and lean mass

Increased plasma concentrations

Vd

Other physiological changes in elderly patients

Physiological changes

Possible pharmacological modifications

Increased renal elimination

METABOLISM

- Reduced hepatic volume and lower hematic flow
- Lower first passage metabolism

RENAL ELIMINATION

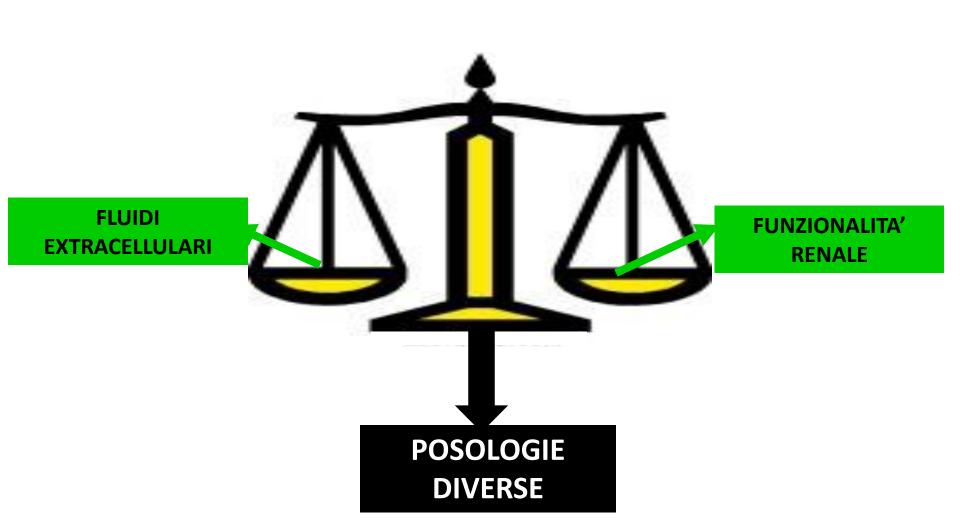
Reduced hematic renal flow

half-life

 Reduced glomerular filtration

Creatinina clearance: - 10 ml / min per decade di età

CI. Creat. =
$$\frac{(140 - \text{anni}) \text{ x Kg.}}{72 \text{ x creatinemia in mg/dl}} \text{ se F x 0.85}$$


Fattori di correzione (f.c.) del dosaggio di un farmaco in relazione alla funzionalità renale

% del farmaco escreto immodificato nelle urine

Clearance della creatinina (ml/min)

	70 anni (CI: 60 ml/min)	20 anni (Cl 120 ml/min)
10	1,1	1,0
20	1,1	1,0
30	1,2	1,0
40	1,3	1,0
50	1,3	1,0
60	1,4	1,0
80	1,7	1,0
90	1,8	1,0
100	2,0	1,0

Fattori che influenzano il tempo di permanenza di un farmaco nell'organismo

Does a previous antibiotic exposure play a role on the treatment of infections in LTCFs?

J Antimicrob Chemother 2012; **67**: 2982–2987 doi:10.1093/jac/dks300 Advance Access publication 3 August 2012

Journal of Antimicrobial Chemotherapy

Epidemiology and genetic characteristics of extended-spectrum β-lactamase-producing Gram-negative bacteria causing urinary tract infections in long-term care facilities

Marco Tinelli¹, Maria Adriana Cataldo^{2*}, Elisabetta Mantengoli³, Chiara Cadeddu⁴, Ettore Cunietti⁵, Francesco Luzzaro⁶, Gian Maria Rossolini^{3,7} and Evelina Tacconelli⁸

Logistic regression analysis

Risks factors for ESBL + GN UTIs

- Previous antibiotic therapy (OR 4)
- Presence of urinary catheter (OR 15)
- ➤ <u>Highest risk</u>: <u>exposure to >7 days of quinolones and cephalosporins</u>
 (OR 7), after adjusting for type, dosage and duration of antibiotic

Risks factors for ESBL - GN UTIS

- Previous surgical procedures (OR 2)
- Presence of urinary catheter (OR 8)
- No specific antibiotic significant risk for UTIs after adjusting for demographic and clinical risks factors

Recent Exposure to Antimicrobials and Carbapenem-Resistant Enterobacteriaceae: The Role of Antimicrobial Stewardship

INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY AUGUST 2012, VOL. 33, NO. 8

Dror Marchaim, MD;¹ Teena Chopra, MD;¹ Ashish Bhargava, MD;¹ Christopher Bogan, BS;¹ Sorabh Dhar, MD;¹ Kayoko Hayakawa, MD, PhD;¹ Jason M. Pogue, PharmD;² Suchitha Bheemreddy, MD;¹ Christopher Blunden, BS;¹ Maryann Shango, MD;¹ Jessie Swan, BS;¹ Paul R. Lephart, PhD;³ Federico Perez, MD;^{4,5} Robert A. Bonomo, MD;^{4,5,6,7,8} Keith S. Kaye, MD, MPH¹

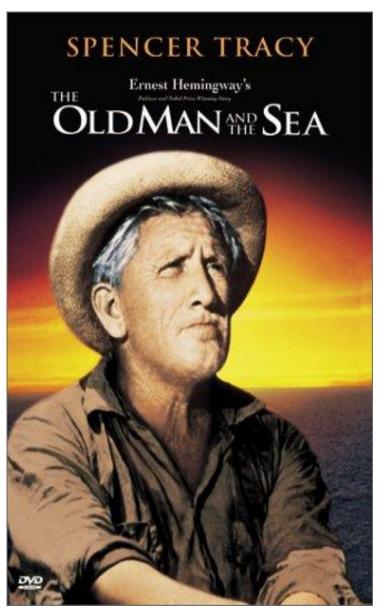
Univariate Analyses of Risk Factors for Isolation of Enterobacteriaceae					
Variable	CRE	ESBL	Susceptibles ^b		
Demographics					
Age, years, mean \pm SD	63.4 ± 18.5	63.5 ± 19.4	59.5 ± 20.4		
Age >65 years	53 (58.2)	45 (49.5)	37 (40.7)		

TABLE 2. Multivariable Models of Risk Factors for Enterobacteriaceae Isolation, Detroit Medical Center, September 1, 2008, to August 31, 2009

	CRE vs uninfe	cted ^b	ESBL vs uninfo	ected ^b	Susceptible uninfected		CRE vs ESI	BL	CRE vs suscep	otible	CRE vs al	
Variable ^a	OR (95% CI)	P	OR (95% CI)	P	OR (95% CI)	P	OR (95% CI)	P	OR (95% CI)	P	OR (95% CI)	P
Any antibiotic exposure in previous 3 months	11.4 (2-64.3)	.006	1.7 (0.7-4.1)	.24			5.2 (1.4–19.4)	.015	12.3 (3.3-45)	<.001	7.1 (1.9–25.8)	.003
Permanent residency in institution	1.04 (0.2-4.5)	.96	1.3 (0.5–3.6)	.56	0.15 (0.05-0.5)	.002	2.1 (1-4.2)	.05	5.3 (2.1–12.9)	<.001	2.6 (1.3-5.3)	.01
Isolation of resistant bacteria in previous 6 months ^c	15.3 (4.2-55.6)	<.001	8.25 (2.7-25.7)	<.001	6.6 (1.9-23.3)	.003	1.7 (0.76-3.7)	.2	1.8 (0.7-4.7)	.23	2.9 (1.4-5.7)	.003
Dependent functional status in background	1.4 (0.5-4.4)	.55	5.6 (2.1-14.7)	.001	2.6 (1.1-6.4)	.03			2.0 (0.7-6.2)	.2	1.6 (0.6-4)	.33
ICU stay in previous 3 months	3.9 (1.3-12.4)	.02	5.2 (2.1-13.2)	.001	3.0 (1.2-7.2)	.02			1.6 (0.6-4)	.34	1.36 (0.7-2.7)	.37
Recent (6 months) invasive procedure	4.2 (1.2-15)	.03	1.2 (0.4-3.4)	.76	3.2 (1.3-8)	.01	2.8 (1.1-7.6)	.04			2.7 (1.1-7.1)	.04
Charlson weighted index comorbidity ≥3	3.1 (0.8–11.8)	.1	1.1 (0.4–2.7)	.87	2.2 (0.94–5)	.07	2.4 (1.03–5.6)	.04	4.8 (1.9–12.5)	.001	3.1 (1.4–7)	.006

NOTE. CI, confidence interval; CRE, carbapenem-resistant Enterobacteriaceae; ESBL, extended-spectrum β-lactamase-producing Enterobacteriaceae; ICU, intensive care unit; OR, odds ratio.

Antimicrobial consumption is a specific risk factor for CRE isolation.


Antimicrobial exposures were the only specific predictor of CRE.

^a If a variable was not significant in bivariate analysis, it was not forced into the multivariable model.

^b Part of the case-case-control analysis.

^c Includes methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, ESBL-producing Enterobacteriaceae, Acinetobacter baumanni, and Pseudomonas aeruginosa.

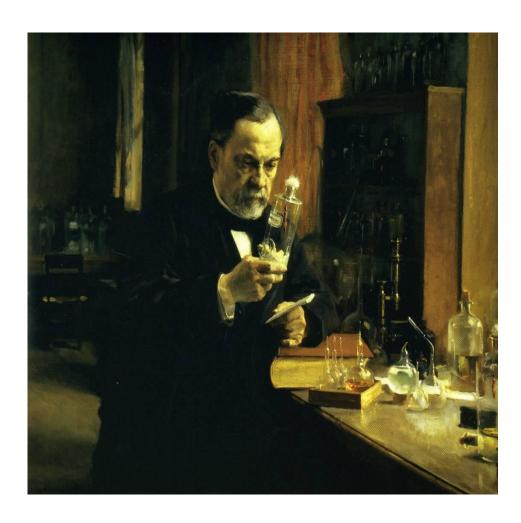
Antibiotics and elderly patients

Best therapeutic approach

Tailor the antibiotic treatment

USA, 1944

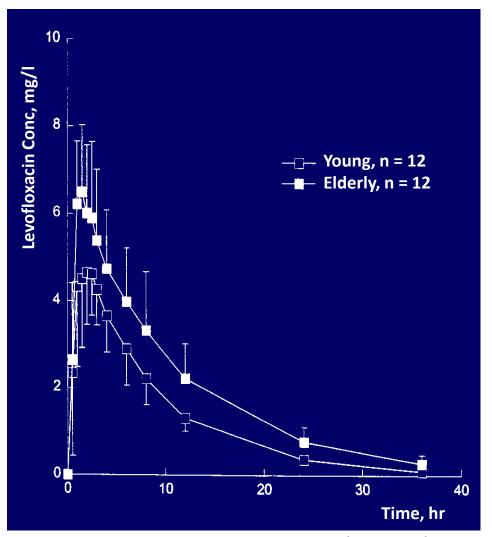
Antibiotic treatment in the elderly


- For short half-life, hydrophilic antimicrobials (β-lactams and carbapenems) prefer split doses and extended infusions (no PAE)
 - Minor daily exposure (about 1/4 to 1/3 less each day)
 with greater results on outcome and resistance
- Concentration-dependent usually with prolonged PAE: amikacin, gentamicin, ciprofloxacin and levofloxacin require higher single shot delaying next administration (Cmax/MIC > 10)
 - TDM of peak levels for improved results

Louis Pasteur in his laboratory

QUINOLONES

AUC/MIC 87-250

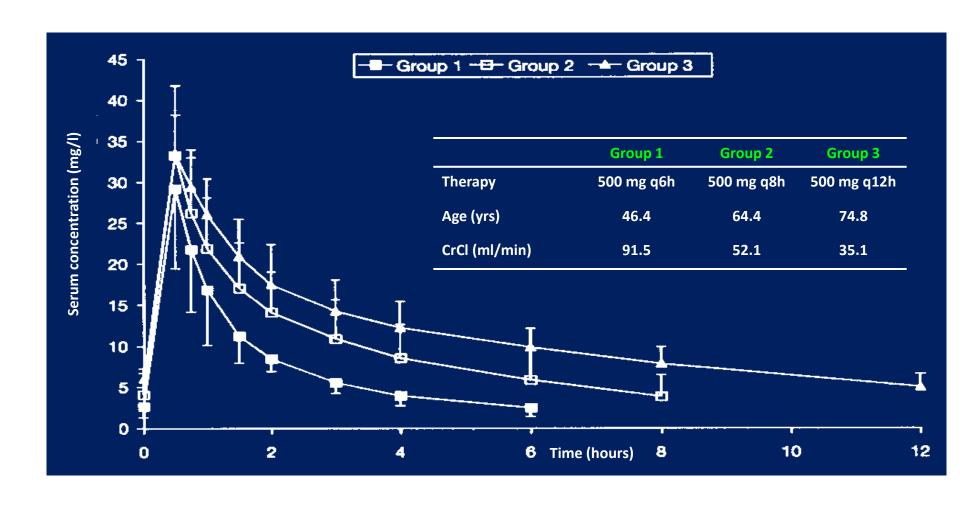

Cmax/MIC = 12

Albert Edelfelt - 1885 - Musée d'Orsay - Paris

Levofloxacin 500 mg single oral dose

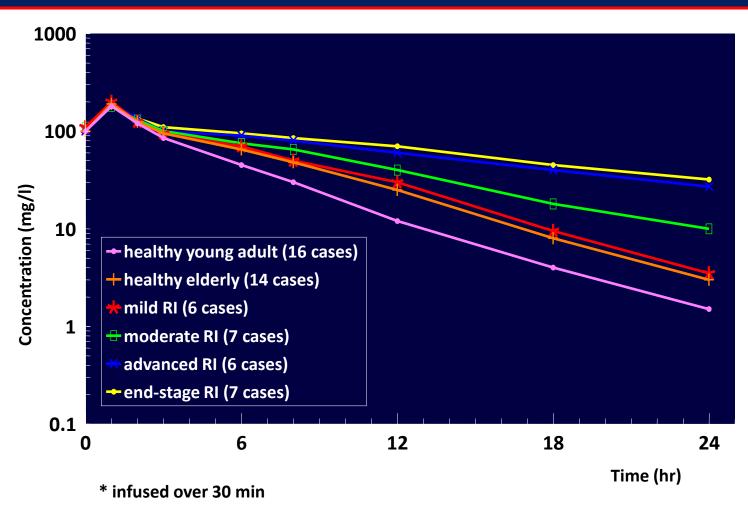
Mean plasma concentrations

Levofloxacin


Pharmacokinetic parameters (mean ± SD)

Parameter	Young (n = 12)	Elderly (n = 12)
C _{max} (mg/l)	5.52 ± 1.02	6.96 ± 1.60
t½ (h)	6.0 ± 0.9	7.6 ± 2.0
AUC _{0-∞} (mg·h/l)	47.5 ± 9.8	74.7 ± 23.3
CL _R (ml/min)	140 ± 33	91 ± 29

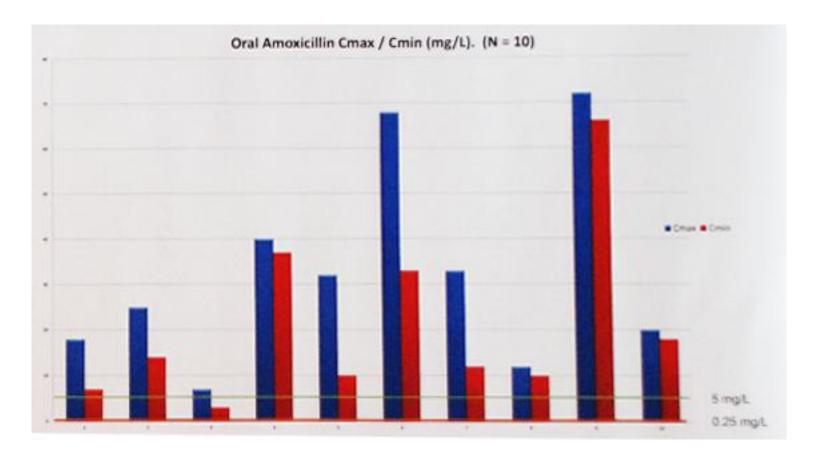
Chien SC et al., Antimicrob Agents Chemother, 1997


MEROPENEM

Mean serum concentrations

ERTAPENEM

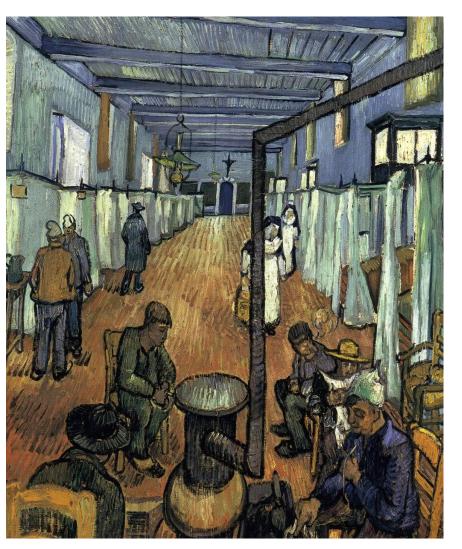
Mean plasma concentration-time curves following a single 1g dose* in healthy subjects and patients with various degrees of renal insufficiency


Holland SD et al., 2001

Pharmacokinetic/pharmacodynamic (PK/PD) profile of oral amoxicillin in elderly patients with Gram-positive infections requiring prolonged antimicrobial courses

L. Pagani^{1,2}, V. Vitrat², C. Janssen², F. Jehl³, A. Renzoni⁴, J. Gaillat², JP. Bru²

¹ID Unit Bolzano Central Hospital, Bolzano; Italy. ²ID Unit Annecy-Genevois Hospital Centre, Annecy; France. ³Lab Bacteriology University Hospital, Strasbourg; France. ⁴ID Unit Geneva University Hospitals, Geneva; Switzerland.



Cmin were also directly correlated to creatinine level, thus indicating a likely prolonged drug half-life in the presence of decreased renal function. No adverse events attributable to either drug regimen were observed.

The Sick-Ward of the hospital in Arles

AMINOGLYCOSIDES

 $C_{max}/MIC \ge 8 - 10$ (once daily)

Vincent Van Gogh - 1889

Amikacin pharmacokinetics

Normal creatinine clearance

Normal serum creatinine

		Younger	Older
Number	37	24	50
Age (yrs)*	28.9 (± 13.7)	19.7 (± 7.0)	48.8 (± 14.8)
Wt (kgs)*	72.2 (± 20.8)	63.0 (± 19.0)	77.9 (± 16.6)
Creatinine (mg/dl)*	0.9 (± 0.2)	0.9 (± 0.2)	1.0 (± 0.2)
CI _{cr} (ml/min/1.73m²)*	136 (± 29)	135 (± 38)	87 (± 34)
t½ (hrs)*	1.9 (± 1.2)	1.4 (± 0.4)	3.7 (± 2.9)
Vd (l/kg)*	0.23 (± 0.08)	0.22 (± 0.08)	0.23 (± 0.09)
Amikacin clearance (ml/hr/kg)*	98 (± 38)	113 (± 37)	60 (± 31)

^{*}Expressed as the mean and standard deviation

Decreasing daily dosing according to physiopathological status

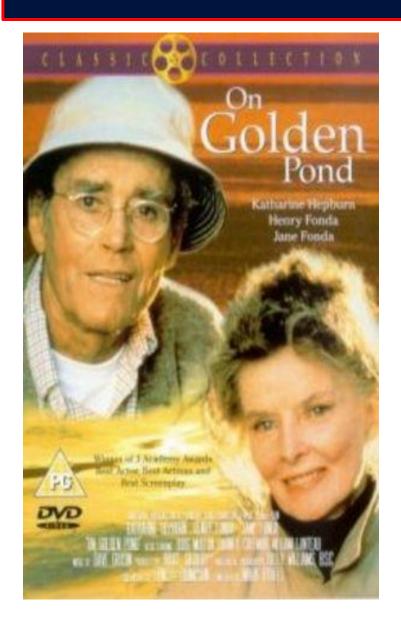
β-lactams
Glycopeptides
Carbapenems

 $C_{min} > MIC$

- TZP: from 4.5 g x 3 to 4 x 2.25 g
- CAZ: from 2 g x 3 to 3 g/24 hrs
- MEM: from 1 g x 4 to 500 mg x 4

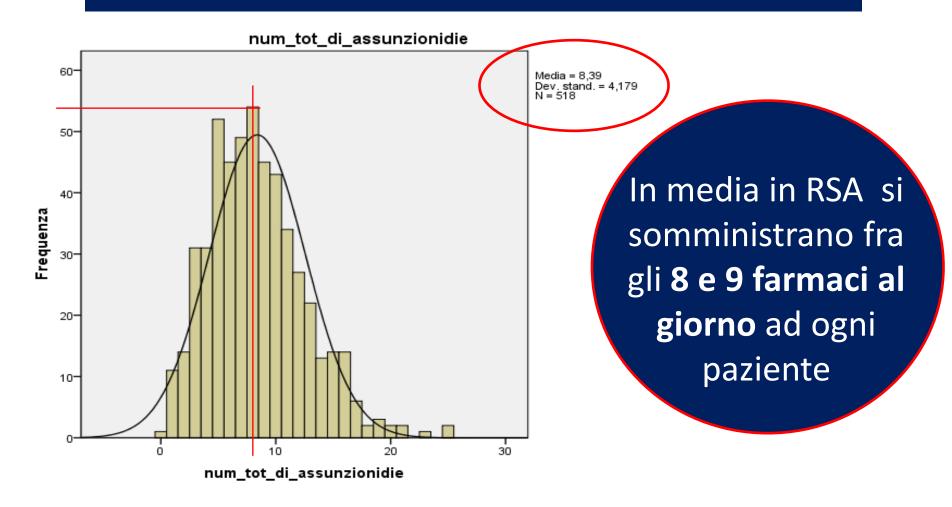
Aminoglycosides Fluoroquinolones Lipopeptides

C_{max} / MIC; AUC/MIC


- AMK: from 15 mg/kg x 1 to 15 mg/kg/48 hrs
- CIP: from 500 mg x 2 to750 mg x 1
- DAP: from 8 mg/kg x 1 to 6 mg/kg/48 hrs

Suggested Colistin Dosing for Various Patients Categories

Loading dose (MU)					
In all patient category	Body weight ¹ X 66.500 x target peak level				
	(Maximum permitted dose 10 MU) Maintenance dose after 24 hours Tip: 70Kg-LD=9MU				
Maintenance dose (MU)					
Not on renal replacement	Target peak x 33.250 x (1.5 x CrCL + 30) given in 2-3 doses ClCr > 70: 4.5 MU x 2 ClCr ~ 50: 3.5 MU x 2 ClCr ~ 30: 2.5 MU x 2 ClCr ~ 20: 2.0 MU x 2				
Receiving intermittent hemodialysis	2 MU in two daily doses Additional 30% of The daily dose on day of hemodialysis				
Receiving continuous renal replacement	9-10 MU in two or three daily doses				


¹ Ideal or real body weight in Kg (choose the least)

Antibiotics and elderly patients

 Co-administration of many drugs (≥3) (i.e. hypertension, atherosclerosis, diabetes, etc.)

POLITERAPIE: NUMERO DI FARMACI CHE OGNI PAZIENTE ASSUME MEDIAMENTE IN UN GIORNO IN RSA

Febbraio 2012, 520 pazienti, RSA Fondazione Don Gnocchi, Milano.

Antibiotics and elderly patients

Increased risk of drug-drug interactions and adverse events

Main drug-drug interactions with antimicrobial drugs (I)

Drug or drug class	Interacting drugs	Potential clinical effects
Aminoglycosides	Amphotericin B, cyclosporin, cisplatin, tacrolimus, diuretics and vancomycin	Nephrotoxic effects
Amoxicillin and ampicillin	Allopurinol	Cutaneous rash
Fluoroquinolones	Pharmaceutical preparations containing alluminum, iron, magnesium or zinc;	Reduced absorption of all fluoroquinolones
	antiacids and sucralfate	Ventricular arrhythmia
 Ciprofloxacin 	Antiarrhythmic drugs Preparations containing	Reduced absorption of ciprofloxacin
	calcium	Increase in theophylline
	Theophylline	concentration
	Warfarin	Increased anticoagulant effect

Novelli A, De Bac C, 2007

Main drug-drug interactions with antimicrobial drugs (II)

Drug or drug class	Interacting drugs	Potential clinical effects		
Linezolid	Serotonergic agents (SSRI, TCA and MAOI)	Serotonergic syndrome		
Macrolides				
 azithromycin 	Pharmaceutical preparations containing alluminum or magnesium	Reduced absorption of azithromycin		
clarithromycinerithromycin	Calcium, statins, cyclosporin, digoxin, theophylline, warfarin	Increase in concentration or interaction; increased macrolide concentration (calcium agonists)		

Common antimicrobial-induced adverse events in elderly persons

Antimicrobial class/agent Adverse event

β-lactams Diarrhea, drug fever, intestinal nephritis,

rash,

Carbapenems thrombocytopenia, anemia and neutropenia

Seizure

Macrolides and azalides Gastrointestinal intolerance, QT

prolongation and ototoxicity

Fluoroguinolones Nausea, vomiting, CNS effects, decreased

seizure threshold and QT prolongation

Aminoglycosides Nephrotoxicity and ototoxicity

Trimethoprim- Blood dyscrasias, drug fever, hyperkalemia

sulfametoxazole and rash

SHEA Position Paper

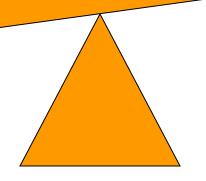
Antimicrobial Use in Long-Term-Care Facilities

Lindsay E. Nicolle, MD; David W. Bentley, MD; Richard Garibaldi, MD; Ellen G. Neuhaus, MD; Philip W. Smith, MD; the SHEA Long-Term-Care Committee

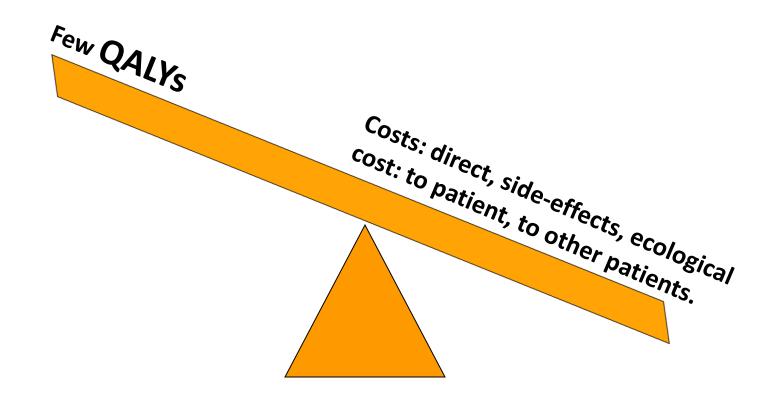
Antimicrobials and Comfort Care

It is accepted that, for selected patients in LTCFs, it is ethically appropriate not to offer therapy with antimicrobials.

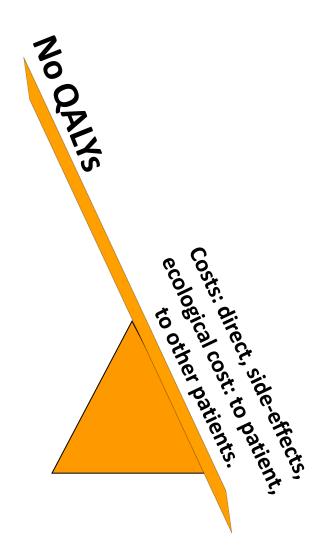
Some hospitals and NHs currently have policies that address the ethical issues of antibiotic use for patients with life-threatening infections, and advance directives frequently list antimicrobial therapy among lifesustaining treatments such as transfusions and ventilators.


42 years old patient with severe infection

Benefits: better survival;


less morbidity: QALYS

Costs: direct, side-effects, ecological cost: to patient, to other

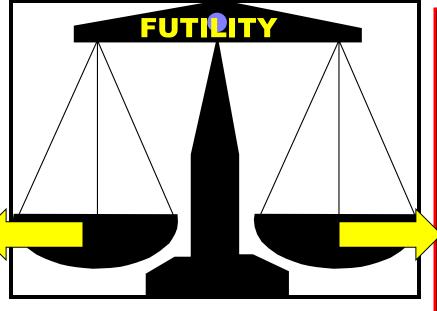

patients.

80 years old healthy patient with severe infection:

80 years patient with severe dementia for years, pressure sores, urinary catheter and severe contractures, severe infection:

Approach to antimicrobial therapy: ethical dilemnas

Ethical principles:


- autonomy
- •beneficence and nonmaleficence
 - •justice

Goal of the treatment

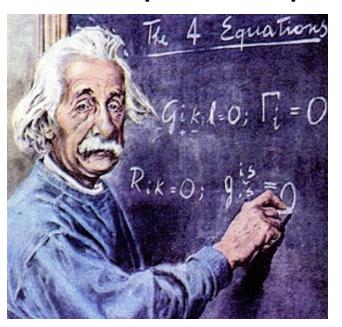
life-sustaining treatment

symptom-control

prolongation of life

Costs of the treatment

expensive drugs


discomfort

side effects

treatment failure

Conclusion

A. Einstein (1879-1955)

 Antibiotic doses should be reduced because of the decreased lean body mass of the elderly

Tailored treatment !!!!