

"6th INFEC*tivology* TOday"

Difficoltà ed insuccessi nel trattamento delle infezioni da Gram-negativi MDR

Maddalena Giannella

Clinica di Malattie Infettive

Policlinico S. Orsola – Malpighi Bologna

Summary

Treatment failure

Emergence of further antibiotic resistance

Crude mortality

Infection related mortality

Clinical success

Microbiological eradication

Tumbarello M et al. Antimicrob Agents and Chemother 2007: 51 Tumbarello M et al. Clin Infect Dis 2012:55 Pena C et al.Clin Infect Dis 2013:57 Durante Mangoni E et al. Clin Infect Dis 2013:57

Predictors of mortality in multidrug-resistant *Klebsiella pneumoniae* bloodstream infections

Viale P, Giannella M et al. Expert Opinion Infect Dis 2013

	Unmodifiable risk factors	Modifiable risk factors			
ESBL KP BSI	 Rapidly fatal disease, ≥ 2 comorbidities, LOS before BSI, >2 antibiotics before BSI ICU admission, MV, APACHE II Nosocomial BSI Deteriorated mental status, septic shock 	 Delay > 72 h appropriate therapy Carbapenem treatment (protective) 			
CR-KP BSI	 Age, Charlson index, cardiovascular and chronic liver disease, SOT ICU stay, APACHE II Pitt score, persistent BSI, pulmonary source, septic shock Colistin resistant strain 	 Source control (protective) Combination carbapenem-containing therapy (protective) 			

217 *Kp* BSI

Retrospective cohort 2010-2012 92 (42%) KPC-positive, 49 (23%) ESBL-positive, and 1 (0.5%) MBL positive isolates

Girometti N, Lewis R, Giannella M et al. *accepted in Medicine (Baltimore)*

ESBL KP

Girometti N, Lewis R, Giannella M et al. accepted in Medicine (Baltimore)

CR-KP

Girometti N, Lewis R, Giannella M et al. accepted in Medicine (Baltimore)

	Unmodifiable risk factors	Modifiable risk factors
PA BSI	 Age ≥65 years, Charlson ≥3, immunosuppression LOS prior BSI High risk source, Pitt ≥2 APACHE II ≥22 MDR, XDR 	 Inappropriate IAT No positive impact of combination therapy over appropriate monotherapy
MDR/XDR AB infections	 Malignancy, CKD, Charlson >3 APACHE II, SAPS II >40 	 Inappropriate IAT No ID consultation Higher microbiological eradication (61% vs 45%, p=.03) for colistin+rifampicin vs colistin alone

Tam VH et al. AAC 2010:54; Hirsh EB et al. DMID 2012:72 Bowers DR et al. AAC 2013:57; Pena C et al. Clin Infect Dis 2013:57 Lee Y-T et al. Clin Infect Dis 2012:55; Khawcharoenporn T et al. IJAA 2014:43 Durante Mangoni E et al. Clin Infect Dis 2013:57

Appropriate initial antibiotic therapy

Local epidemiology

Individual patient factors

- ✓ preexisting medical conditions
- ✓ severity of illness
- ✓ nature of infection
- ✓ previous antibiotic and hospital exposure
- ✓ presence of indwelling catheters
- colonization with antibiotic-resistant organisms

Risk factors for KPC-producing *Klebsiella pneumoniae* bloodstream infection among rectal carriers: a prospective observational multicenter study

Giannella M et al. Submitted data

Matched case-control study of all adult CR-KP rectal carriers hospitalized in 5 tertiary teaching hospitals in Italy over 2 years

143 of 1,813 CR-KP rectal carriers (7.8%) developed BSI

572 controls without a documented infection during their hospitalization

	OR (95% CI)	P-value	Risk score	
			point	
Admission to ICU	1.65 (1.05-2.59)	0.03	2	
Invasive abdominal procedures	1.87 (1.16-3.04)	0.01	3	
Chemotherapy/radiation therapy	3.07 (1.78-5.29)	<0.0001	4	
Colonization at site besides stool	3.37 (2.56- 4.43)	<0.0001	5 per site	
(risk per each additional site)				

Risk factors for KPC-producing *Klebsiella pneumoniae* bloodstream infection among rectal carriers: a prospective observational multicenter study

Giannella M et al. Submitted data

	Sens	Spec	PPV	NPV
Risk score ≥2	93%	42%	28.6%	96%

PK/PD issues

Optimal meropenem concentrations to treat MDR *Pseudomonas aeruginosa* septic shock

Taccone FS et al. Antimicrob Agents Chemother 2012

Recurrence

	Recurrence rate
ESBL producing Enterobacteriaceae	13-67%
Carbapenemase producing Enterobacteriaceae	
MDR P. aeruginosa	20%
MDR A. baumannii	44%

Kanafani ZA et al. Am J Infect Control 2005; Cattaneo C. Ann Hematol 2014:93 Planquette B et al. Am J Resp Crit Care Med 2013:188 Shields RK et al. PLOSone 2012:7

Pseudomonas aeruginosa VAP **Predictive Factors of Treatment Failure**

Planquette B et al. Am J Resp Crit Care Med 2013:188

- Retrospective analysis (1997-2011, 12 French ICUs) of 314 patients with 393 PA-VAP
- Main objective: PA-VAP recurrence (new suspicion of VAP with positive sample after a minimum of 4 days from the 1st PA-VAP episode)

Recurrence 20%. median 14 (IQR 8-20) davs after the 1st episode

Pseudomonas aeruginosa VAP **Predictive Factors of Treatment Failure**

Planquette B et al. Am J Resp Crit Care Med 2013:188

First episode Recurrence

	Ceftaz	idime	Cefep Cefpir	ime/ ome	Pipera	acillin	Ciprof	loxacin	Ami	kacin	Pen	ems
	S (n = 51)	I/R (n = 11)	S (n = 54)	I/R (n = 8)	S (n = 54)	I/R (<i>n</i> = 8)	S (n = 54)	I/R (<i>n</i> = 8)	S (n = 53)	I/R (<i>n</i> = <i>9</i>)	S (n = 51)	I/R (n = 11)
Use for the firstepisode	during the f	irst 2 wk, n	(%)									
No	31 (88.6)	4 (11.4)	45 (89.9)	8 (15.1)	30 (100)	0 (0)	35 (97.2)	1 (2.8)	14 (100)	0 (0)	38 (95)	2 (5)
Yes	20 (74.1)	7 (25.9)*	9 (100)	0 (0)	24 (75)	8 (25) [†]	19 (73.1)	7 (26.9) [†]	39 (81.3)	9 (18.8) [†]	13 (59.1)	9 (40.9) [†]
Number of days of use during the first 2 wk (first episode), median (IQR)	6 (2–11)	9 (6–11)	6 (2–11)	_	8 (3–10)	8 (4–12)	4 (3–9)	8 (4–9)	4 (3–8)	4 (3–5)	3 (2–10)	5 (4–9)

Pseudomonas aeruginosa VAP Predictive Factors of Treatment Failure

Planquette B et al. Am J Resp Crit Care Med 2013:188

	Dead or PA-VAP recurrence or in ICU at day 14 (n=239)	Discharged alive without PA-VAP recurrence within 14 days (n=75)	р	SHR (95%CI)
Limitation of life support in the first 48 h of ICU stay	10.5%	1.3%	0.05	0.1 (0.02-0.9)
Vasopressors	41.4%	25.3%	0.02	0.4 (0.2-0.7)
Delay to first PA-VAP onset <12 d	44.4%	60%	0.02	2.3 (1.4-3.7)
MDR/XDR PA	46.4%	32%	0.03	0.6 (0.4-1.0)
IAT None Monotherapy Combination therapy	19.2% 25.9% 54.8%	9.3% 37.3% 53.3%	0.08	

Epidemiology, Clinical Characteristics and Outcomes of Extensively Drug-Resistant *Acinetobacter baumannii* Infections among Solid Organ Transplant Recipients Shields RK et al. PLOSone 2012:7

- Retrospective analysis of 69 SOT recipients: 28 colonized, 41 infected with XDR-Ab
- Median time to colonization and infection after SOT 121 and 172 days, respectively
- Main infection site: respiratory tract 98%
- 28-day survival rate
 among infected pts 54%

Epidemiology, Clinical Characteristics and Outcomes of Extensively Drug-Resistant *Acinetobacter baumannii* Infections among Solid Organ Transplant Recipients Shields RK et al. PLOSone 2012:7

44% recurrence (signs and symptoms of infection with XDR-Ab isolation within the following 3 months), 28% multiple recurrences

XDR-Ab colonization (p=0.04) and longher hospital stays (p=0.02) were associated with recurrence

Subject	Initial Disease	Rx (Duration, days)	First Recurrence	Rx (Duration, days)	Outcome	# of Additional Recurrences	Final Recurrence	Rx (Duration, days)	Outcome	Micro Eradication	Final Outcome
1	VAP	CD (28)	VAP	CD (28)	Success	0	-	-	-	Yes	Death 232 days after infection ¹
2	VAT	CD (5)	VAP	CDA (18)	Success, Recurrence	3	VAP	CDA (71)	Success	Yes	Death 250 days after infection ²
3	VAP	CD (14)	VAP	CD (17)	Success, Recurrence	1	VAP	CDA (22)	Success	Yes	Alive
4	VAP	CD (21)	VAP	CD (14)	Success, Recurrence	1	VAP	No Rx ³	Death	No	Death
5	VAP	CD (13)	VAP	CD (10)	Success, Recurrence	3	VAP	CDA (3)	Death	No	Death
6	VAP	CD (14)	VAP	CD (15)	Failure	1	VAP	CDA (15)	Success	Yes	Alive
7	VAP	CD (14)	Bacteremia	CD (10)	Success	0	-	-	-	Yes	Alive
8	VAP	CD (7)	VAP	CD (7)	Success	0	-	-	-	Yes	Death 107 days after infection ⁴

Emergence of further resistance

	Resistance to colistin	Resistance to tigecycline
CR-KP	7-36%	2-20%
MDR P. aeruginosa	6%	
MDR A. baumannii	0.1-41%	14-66%

Hirsh EB et al. J Antimicrob Chemother 2010; Capone et al. Clin Microbiol Infect 2013 Cai Y et al. J Antimicrob Chemother 2012:67 Sader HS et al. DMID 2011:69; Navon-Venezia S et al. JAC 2007:59

Risk factors associated with the isolation of colistin-resistant Gram-negative bacteria: A matched case-control study Matthaiou DL et a. Crit Care Med 2008

- Retrospective matched 1:1 case-control study at a 450-bed hospital in Athens, 2006-2007
- 41 patients with isolation of a colistin-resistant GNB, 35 (85.4%) were deemed as having infection
- 41 controls who were all matched to case patients for bacterial species and site of isolation. 3

Risk factors associated with the isolation of colistin-resistant Gram-negative bacteria: A matched case-control study

	CR	CS	р
Age	57±17	66±19	0,005
LOS prior to isolation of GNB	37±32	28±36	0,08
APACHE II score	30±26	18±22	0,02
Prior use of colistine	83%	37%	<0,001
Days of prior colistin	25±24	16±20	<0,001

Multivariate analysis : prior use of colistin OR 7.78, p=0.002

In-hospital mortality 37% CR vs 44% CS (p=0.58)

Combination therapy and emergence of resistance

Combination Therapy for Treatment of Infections with Gram-Negative Bacteria

Pranita D. Tamma,^a Sara E. Cosgrove,^b and Lisa L. Maragakis^b

The Johns Hopkins Medical Institutions, Department of Medicine, Division of Pediatric Infectious Diseases, Baltimore, Maryland, USA,^a and The Johns Hopkins Medical Institutions, Department of Medicine, Division of Infectious Diseases, Baltimore, Maryland, USA^b

Potential advantages:

- increased likelihood that the infective pathogen will be susceptible to at least one of the components of an empiric combination regimen
- synergistic effect afforded by the use of two agents

protection against emergence of resistance with combination therapy

Clin Microbiol Rev 2012;25:450-70

Ref	Study type	ΜΟ	Treatment	Outcome
Lee J et al. JCM 2009	Case series	CR-KP	Colistin alone 12 Colistin+tigecycline 4	Colistin R during treatment 25% vs 0
Lister PD et al. CID 2005	In vitro	P. aeruginosa	Imipenem+levofloxa cin	Effective combination for preventing emergence of resistan ce even when subpopulations resistant to both drugs are present
Rodriguez CH et al. JInfectDevCt ries 2010	In vitro	XDR A. baumannii	Colistin+rifampicin Colistin+imipenem	Synergistic against heteroresistant isolates and prevented colistin- resistant mutants
Shields RK et al. PLOSone 2012	Retros pective study	XDR A. baumannii	Colistin+carbapenem 21 Colistin+tigecycline 3	Colistin R during treatment 18% vs 100%

Proposed treatments for coli-R strains

Colistin + doripenem

Jernigan MG et al Antimicrob Agents Chemother 2012

Colistin + doripenem + ertapenem

Hong JH et al Antimicrob Agents Chemother 2013

Colistin + rifampicin

Tascini C et al Antimicrob Agents Chemother 2013 Gaibani P et al J Antimicrob Chemother 2014

Doripenem or meropenem + ertapenem

Bulik CC and Nicolau DP Antimicrob Agents Chemother 2011 Giamarellou H et al. Antimicrob Agents Chemother. 2013 Ceccarelli G et al. Antimicrob Agents Chemother. 2013 Olivia A et al J Antimicrob Chemother 2014

Adverse events

	Colistin	Polymyxin B	Tigecycline
Nephrotoxicity	6-60%	20-40%	
Neurotoxicity paresthesia	27%		
Respiratory failure	Anedoctal		
Vomiting and nausea			≈25%
Pancreatitis			<1%

Yahav D et al. Clin Microbiol Infect 2011 Tasina E et al Lancet Infect Dis 2011

Risk factors for nephrotoxicity

- Older age
- 💠 Colistin vs. polymyxin B
- Pre-existing renal insufficiency
- Concomitant use of other potentially nephrotoxic agents (NSAD, vancomycin, aminoglycosides, loop diuretics, vasoppressors, contrast, amphotericin B)
- Receipt of concomitant rifampicin
- Hypoalbuminemia
- Higher dosing (cumulative or daily dose)

Yahav D et al Clin Microbiol Infect 2011 Pogue JM et al. Clin Infect Dis 2011 Dalfino L et al. Clin Infect Dis 2012 Akajabor DS et al. Clin Infect Dis 2013 Tuon FF Int J Antimicrob Agents 2014

How Does Colistin-Induced Nephropathy Develop and Can It Be Treated?

Ozkan G et al. Antimicrob Agents Chemother 2013

Conclusions

- Predictive models for MDR GNB (true) infections are needed to guide IAT in different patient settings
- Large RCTs to assess the impact of combination therapy over monotherapy for MDR GNB (mainly CR-KP) are needed
- Antibiotic administration according with PK/PD characteristics allows to obtain better outcome even against MDR strains
- Incidence and risk factors for CR-KP recurrence have yet to be determined
- Impact of combination therapy on further resistance emergence should be determined in clinical studies
- Anti-oxidant agents may be used to prevent nephrotoxicity in patients treated with colistin

